Characterization of Hair Follicle Development in Engineered Skin Substitutes

نویسندگان

  • Penkanok Sriwiriyanont
  • Kaari A. Lynch
  • Kevin L. McFarland
  • Dorothy M. Supp
  • Steven T. Boyce
چکیده

Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation.

We screened a series of antibodies for their exclusive binding to the human hair follicle bulge. In a second step these antibodies were to be used to identify basal keratinocytes and potential epithelial stem cells in the human epidermis and in engineered skin substitutes. Of all the antibodies screened, we identified only one, designated C8/144B, that exclusively recognized the hair follicle b...

متن کامل

Epidermal Stem Cells Cultured on Collagen-Modified Chitin Membrane Induce In Situ Tissue Regeneration of Full-Thickness Skin Defects in Mice

A Large scale of full-thickness skin defects is lack of auto-grafts and which requires the engineered skin substitutes for repair and regeneration. One major obstacle in skin tissue engineering is to expand epidermal stem cells (ESCs) and develop functional substitutes. The other one is the scaffold of the ESCs. Here, we applied type I collagen-modified chitin membrane to form collagen-chitin b...

متن کامل

Morphogenesis of chimeric hair follicles in engineered skin substitutes with human keratinocytes and murine dermal papilla cells.

Engineered skin substitutes (ESS) have been used successfully to treat life-threatening burns, but lack cutaneous appendages. To address this deficiency, dermal constructs were prepared using collagen-glycosaminoglycan scaffolds populated with murine dermal papilla cells expressing green fluorescent protein (mDPC-GFP), human dermal papilla cells (hDPC) and/or human fibroblasts (hF). Subsequentl...

متن کامل

Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells.

Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneratio...

متن کامل

Assessment of replication rates of human keratinocytes in engineered skin substitutes grafted to athymic mice.

Stable closure of skin wounds with engineered skin substitutes (ESS) requires indefinite mitotic capacity to generate the epidermis. To evaluate whether keratinocytes in ESS exhibit the stem cell phenotype of label retention, ESS (n = 6-9/group) were pulsed with 5-bromo-2'-deoxyuridine (BrdU) in vitro, and after grafting to athymic mice (n = 3-6/group). Pulse and immediate chase in vitro labele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013